Plan of the lecture

Definition of endocrine system

Spectrum of endocrine diseases and metabolic disorders

Thyroid gland

Reminder (how do thyroid gland works)

History-taking

Patient’s examination (clinical, laboratory, instrumental)

symptoms and syndromes

Endocrine pancreas

Reminder (how do pancreas works)

History-taking

Patient’s examination (clinical, laboratory, instrumental)

symptoms and syndromes

More Recently Identified: Kidneys, Heart/blood, Liver, Brain, Fat (adipose) tissue, Placenta

http://classes.midlandstech.edu/carterp/Courses/bio211/chap16/figure_16_01_labeled.jpg
The endocrine system is a group of glands (organs) that regulate physiological functions by releasing hormones into the bloodstream. Hormones are chemicals that carry information to different parts of the body; specific hormones influence certain organs or parts of the body, such as the liver or pancreas. The endocrine system regulates development and growth (for example, puberty), metabolism, sexual and reproductive processes.
Definition of endocrine system

It includes the reproductive glands, adrenal glands, thyroid glands, hypothalamus, pancreas, and pituitary glands. Although distinct from the nervous system, the endocrine system interacts with the nervous system through the hypothalamus, which regulates the pituitary gland function.

The word endocrine derives from the Greek words "endo," meaning within, and "crinis," meaning to secrete.
Spectrum of endocrine diseases and metabolic disorders 1

- **Adrenal disorders**: Adrenal insufficiency, Adrenal hormone excess,
- **Congenital adrenal hyperplasia**, Adrenocortical carcinoma
- **Glucose homeostasis disorders**: Diabetes mellitus, Hypoglycemia
- **Thyroid disorders**: Goiter, Hyperthyroidism, Hypothyroidism, Thyroiditis, Thyroid cancer, Thyroid hormone resistance
Spectrum of endocrine diseases and metabolic disorders 2

- Calcium homeostasis disorders and Metabolic bone diseases: Hyperparathyroidism, Hypoparathyroidism, Pseudohypoparathyroidism, Osteoporosis, Osteitis deformans,
- Rickets, Osteomalacia
- Pituitary gland disorders: Posterior pituitary - Diabetes insipidus, Anterior pituitary - Hypopituitarism, Pituitary tumors, Hyperprolactinemia, Acromegaly, gigantism, Cushing's disease, Growth failure, Dwarfism
Spectrum of endocrine diseases and metabolic disorders

- **Sex hormone disorders**: Disorders of sex development, Hypogonadism, Disorders of Puberty, Menstrual function disorders,
- **Tumours of the endocrine glands not mentioned elsewhere**: Multiple endocrine neoplasia, Carcinoid syndrome
Thyroid gland reminder: how does thyroid gland work

https://www.youtube.com/watch?v=u2tRkaEp_j4
Thyroid gland

reminder: the primary functions, T3 & T4 hormones

• The primary function of the thyroid is production of the hormones T3, T4 and calcitonin. Up to 80% of the T4 is converted to T3 by organs such as the liver, kidney and spleen. T3 is several times more powerful than T4, which is largely a prohormone, perhaps four or even ten times more active
Thyroid gland

reminder: the primary functions, T3 & T4 hormones

• The production of T3, T4 is regulated by thyroid-stimulating hormone (TSH), released by the anterior pituitary. The thyroid and thyrotropes form a negative feedback loop: TSH production is suppressed when the T4 levels are high

http://en.wikipedia.org/wiki/Thyroid_hormone
Thyroid gland

reminder: the primary functions, T3 & T4 hormones

• T3, T4 act on nearly every cell in the body to increase the basal metabolic rate, affect protein synthesis, help regulate long bone growth and neural maturation, and increase the body's sensitivity to catecholamines by permissiveness

http://en.wikipedia.org/wiki/Thyroid_hormone
Thyroid gland reminder: the primary functions, T3 & T4 hormones

- T3, T4 are essential to proper development and differentiation of all cells of the human body. T3, T4 also regulate protein, fat, and carbohydrate metabolism, affecting how human cells use energetic compounds. They also stimulate vitamin metabolism. Numerous physiological and pathological stimuli influence T3, T4 synthesis.

- T3, T4 leads to heat generation in humans.

http://en.wikipedia.org/wiki/Thyroid_hormone
Thyroid gland

reminder: T3 & T4 hormones (derived from modification of tyrosine)

• The thyroid secretes about 80 mg of T4, but only 5 mg of T3 per day
• T3 has a much greater biological activity (about 10 X) than T4
• An additional 25 mg/day of T3 is produced by peripheral monodeiodination of T4
Cardiovascular System
• Increase heart rate
• Increase force of cardiac contractions
• Increase cardiac output
• Up-regulate catecholamine receptors

Respiratory System
• Increase resting respiratory rate
• Increase minute ventilation
• Increase ventilatory response to hypercapnia and hypoxia

Thyroid gland
reminder: functional effects of T3 & T4 hormones
Renal System

- Increase blood flow
- Increase glomerular filtration rate

Intermediary Metabolism

- Increase glucose absorption from the GI tract
- Increase carbohydrate, lipid and protein turnover
- Down-regulate insulin receptors
- Increase substrate availability

Thyroid gland

reminder: functional effects of T3 & T4 hormones 2
Thyroid gland

reminder: functional effects of T3 & T4 hormones

Oxygen-Carrying Capacity

- Increase RBC mass
- Increase oxygen dissociation from hemoglobin

Growth and Tissue Development

- Increase growth and maturation of bone and tooth
- Increase growth and maturation of epidermis, hair follicles and nails
- Increase rate and force of skeletal muscle contraction
- Inhibits synthesis and increases degradation of mucopolysaccharides in subcutaneous tissue
Nervous System

- Critical for normal CNS neuronal development
- Enhances wakefulness, alertness, memory and learning capacity
- Required for normal emotional tone
- Increase speed and amplitude of peripheral nerve reflexes
Thyroid gland

Reminder: functional effects of T3 & T4 hormones

Reproductive System

- Required for normal follicular development, ovulation, maintenance of pregnancy in the female, spermatogenesis in the male

 •
Thyroid gland
Thyroid Stimulating Hormone cause the release of T4, T3

- The thyroid is controlled by the hypothalamus and pituitary
- Through a feedback loop, the pituitary releases TRH (thyrotropin-releasing hormone) which stimulates the release of TSH (thyroid-stimulating hormone)
- TSH stimulates the thyroid gland to produce of the hormones T3, T4 to release into the blood
Thyroid gland
reminder: purpose

• General evaluation of health
• Diagnosis of disease or disorders of the thyroid gland
• Diagnosis of other systemic diseases that affect thyroid gland function
Thyroid gland

history-taking: patient’s interviewing

- gathering of information
- patient’s narrative
- biomedical perspective
- psychosocial perspective
- context
Thyroid gland
clinical examination of the gland: inspection, palpation

• A normal thyroid is estimated to be 10 grams with an upper limit of 20 grams

• An enlarged thyroid is referred to as a goiter

• There is no direct correlation between size and function - a person with a goiter can be euthyroid, hypo- or hyperthyroid

Thyroid gland
clinical examination of the gland
(inspection, palpation, their synthesis)

WHO classification of goiter’ grade

- 0 - no palpable or visible
- 1 - palpable but not visible when the neck is in the normal position, thyroid nodules in a thyroid which is otherwise not enlarged fall into this category
- 2 - clearly visible when the neck is in a normal position and is consistent with an enlarged thyroid when the neck is palpated
Thyroid gland

patient's laboratory examination: Thyroid Panel

Blood

- Thyroid-Stimulating Hormone (TSH) evaluates overall thyroid function
- Total Thyroxine (T4) evaluates the total amount of T4 produced by the thyroid gland
- Free Thyroxine (T4) evaluates the amount of T4 available to the cells and tissues
- Free Tri-iodothyronine (T3) measures the amount of T3 (the active form of the hormone) available to the cells and tissues

https://www.youtube.com/watch?v=ua4uMumAOXI
Thyroid gland

patient’s laboratory examination: Thyroid Panel

http://www.thyroid.org/blood-test-for-thyroid/
Thyroid gland

patient’s laboratory examination: Thyroid Panel

<table>
<thead>
<tr>
<th>TSH</th>
<th>FREE T4 (FT4)</th>
<th>FREE OR TOTAL T3</th>
<th>PROBABLE INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Normal</td>
<td>Normal</td>
<td>Mild (subclinical) hypothyroidism</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>Low or normal</td>
<td>Hypothyroidism</td>
</tr>
<tr>
<td>Low</td>
<td>Normal</td>
<td>Normal</td>
<td>Mild (subclinical) hyperthyroidism</td>
</tr>
<tr>
<td>Low</td>
<td>High or normal</td>
<td>High or normal</td>
<td>Hyperthyroidism</td>
</tr>
<tr>
<td>Low</td>
<td>Low or normal</td>
<td>Low or normal</td>
<td>Non-thyroidal illness; rare pituitary (secondary) hypothyroidism</td>
</tr>
<tr>
<td>Normal</td>
<td>High</td>
<td>High</td>
<td>Thyroid hormone resistance</td>
</tr>
</tbody>
</table>
Thyroid gland

patient's laboratory examination: Thyroid Antibodies

Blood

- Thyroid Peroxidase Antibody (TPOAb) Thyroglobulin Antibody (TgAb)
- Thyroid Stimulating Hormone Receptor Antibody (TRAb)

http://labtestsonline.org/understanding/analytes/thyroid-antibodies/tab/test/
<table>
<thead>
<tr>
<th>THYROID ANTIBODY</th>
<th>ACRONYM</th>
<th>PRESENT IN</th>
<th>WHEN ORDERED</th>
<th>OTHER FACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid peroxidase antibody</td>
<td>TPOAb</td>
<td>Hashimoto thyroiditis; Graves disease</td>
<td>When a person has symptoms suggesting thyroid disease; when a doctor is considering starting a patient on a drug therapy that has associated risks of developing hypothyroidism when thyroid peroxidase antibodies are present, such as lithium, amiodarone, interferon alpha, or interleukin-2</td>
<td>Has been associated with reproductive difficulties, such as miscarriage, preeclampsia, premature delivery, and in-vitro fertilization failure</td>
</tr>
<tr>
<td>Thyroglobulin antibody</td>
<td>TgAb</td>
<td>Thyroid cancer; Hashimoto thyroiditis</td>
<td>Whenever a thyroglobulin test is performed to see if the antibody is present and likely to interfere with the test results (e.g., at regular intervals after thyroid cancer treatment); when symptoms of hypothyroidism are present</td>
<td></td>
</tr>
<tr>
<td>Thyroid stimulating hormone receptor antibody, Thyroid Stimulating Immunoglobulin</td>
<td>TRAb, TSHR Ab, TSI</td>
<td>Graves disease</td>
<td>When a person has symptoms of hyperthyroidism; to monitor the effectiveness of anti-thyroid therapy</td>
<td></td>
</tr>
</tbody>
</table>

http://labtestsonline.org/understanding/analytes/thyroid-antibodies/tab/test/
Thyroid gland
patient’s instrumental examination: sonography

http://www.radiologyinfo.org/photocat/popup/thyromegaly.jpg
Thyroid gland

patient’s instrumental examination: Doppler
Thyroid gland

patient’s instrumental examination: scanning

A. Normal
B. Graves’ disease.
Thyroid gland
patient’s instrumental examination: biopsy

http://www.jaypeejournals.com/eJournals/_eJournals%5C192%5C2011%5CSeptember-December%5Cimages/4_img_2.jpg
Thyroid gland

Patient’s instrumental examination: scan

http://www.ijem.in/articles/2012/16/6/images/IndianJEndocrMetab_2012_16_6_1063_103047_f2.jpg
Thyroid gland
patient’s instrumental examination: ECG
Thyroid gland

Hypothyroidism: etiology 1

Primary

Hashimoto’s thyroiditis with or without goitre
Radioactive iodine therapy for Graves’ disease
Subtotal thyroidectomy for Graves’ disease or nodular goitre
Excessive iodine intake
Subacute thyroiditis
Rare causes (Iodide deficiency, goitrogens such as lithium; antithyroid drug therapy, Inborn errors of thyroid hormone synthesis)
Thyroid gland
hypothyroidism: etiology 2

Secondary
Hypopituitarism
Tertiary (hypothalamic dysfunction)
Peripheral resistance to the action of thyroid hormone
Thyroid gland
hypothyroidism: age aspects

- Early onset (in childhood): delayed/incomplete physical and mental development (may be development of kretinism)
- Later onset (youth): impaired physical growth
- Adult onset (myxedema): gradual changes occur (tiredness, lethargy, decreased metabolic rate, slowing of mental function and motor activity, cold intolerance, weight gain, goiter, hair loss, dry skin, eventually may result in coma)
During iodine deficiency, thyroid hormone production decreases

TSH release increased (less negative feedback)

TSH acts on thyroid, increasing blood flow, and stimulating follicular cells and increasing colloid production, but the only result is that the follicles accumulate more and more unusable colloid

If goiter is due to decreased I, then thyroid gland enlarges (endemic or colloidal goiter)

Cells eventually die from overactivity and the gland atrophies
Thyroid gland
hypothyroidism: clinical symptoms

- Cardiovascular (bradycardia, low voltage ECG, pericardial effusion, cardiomegaly, hyperlipidemia)
- Constipation, ascites
- Weight gain
- Cold intolerance
- Rough, dry, yellowish skin
- Puffy face and hands; hoarse, husky voice
- Respiratory failure
Thyroid gland
hypothyroidism: clinical symptoms 2

- Menorrhagia, infertility, hyper-, prolactinemia
- Renal (impaired ability to excrete a water load)
- Anemia (impaired Hb synthesis, Fe deficiency due to menorrhagia and reduced intestinal absorption, folate deficiency due to impaired intestinal absorption, pernicious anemia)
- Neuromuscular (muscle cramps, myotonia, slow reflexes, carpal tunnel syndrome)
- CNS (fatigue, lethargy, depression, Inability to concentrate)
 Thyroid gland
hypothyroidism: diagnosis

- FT4↓ and TSH↑ (primary hypothyroidism)
- Serum T3 levels are variable
- Positive test for thyroid autoantibodies (Tg Ab & TPO Ab) and an enlarged thyroid gland (Hashimoto’s thyroiditis)
- FT4↓ & TSH inappropriately normal (myxedema)
- Absence of TSH response to TRH (pituitary deficiency)
- TSH↑ & FT4 & FT3 are normal (subclinical hypothyroidism)
• Medical emergency, end stage of untreated hypothyroidism
• Progressive weakness, stupor, hypothermia, hypoventilation, hypoglycemia, hyponatremia, shock, and death
• The patient (or a family member) may recall previous thyroid disease, radiiodine therapy, or thyroidectomy
Thyroid gland

Hypothyroidism: myxedema coma 2

- Gradual onset of lethargy progressing to stupor or coma
- Marked hypothermia (< 24°C)
- Heart failure, pneumonia, excessive fluid administration, narcotics
- ECG: bradycardia and low voltage
- FT4↓
- TSH ↑, normal, or ↓, cholesterol ↑ or N, serum Na ↓
Thyroid gland

hyperthyroidism: etiology

• The second most prevalent endocrine disorder
• Effects women eight times more frequently than men
• May appear after an emotional shock, stress, or an infection
• **Graves’ disease**: excessive output of thyroid hormones
• Other common causes of hyperthyroidism include thyroiditis and excessive ingestion of thyroid hormone (toxic adenoma, Plummer's disease (toxic multinodular goiter))
Thyroid gland

hyperthyroidism: clinical symptoms 1

Emotional (nervousness, irritability) Exophthalmos
Goitre (diffuse enlargement of thyroid, bruit)
Thyroid dermopathy (pretibial myxedema & TSH-R Ab↑)
Heat intolerance
Cardiovascular (palpitation, atrial fibrillation, CHF, dyspnea, angina)
Gastrointestinal (weight, appetite, diarrhea)
Reproductive (amenorrhea, oligo-menorrhea, infertility, gynecomastia)
Bone (Osteoporosis, Thyroid acropachy)

Neuromuscular (nervousness, tremor, emotional labiality, proximal myopathy, myasthenia gravis, hyperreflexia, clonus, periodic hypokalemic paralysis)

Skin (pruritus, onycholysis, vitiligo, hair thinning, palmar erythema, spider nevi)
Thyroid gland

hyperthyroidism: diagnosis 1

• TSH ↓, High FT4↑ and/or FT3↑
 • If eye signs are present, the diagnosis of Graves’ disease can be made without further tests
 • If eye signs are absent and the patient is hyperthyroid with or without a goitre, a radioiodine uptake test should be done
 • Radioiodine uptake and scan (diffuse increased uptake)
Thyroid gland

hyperthyroidism: diagnosis 2

- TSH ↓, High FT4↑ and/or FT3↑
 - TSH-R Ab is specific for Graves’ disease, may be useful in the “apathetic” hyperthyroid patient or who presents with unilateral exophthalmos without obvious signs or laboratory manifestations of Graves’ disease
Thyroid gland

hyperthyroidism: thyroid storm (crisis) 1

• Occurs in a severely hyperthyroid patient caused by a precipitating event such as:
 – Infection
 – Surgical stress
 – Stopping antithyroid medication in Graves’ disease
Clinical clues
- fever → hyperthermia
- marked anxiety or agitation → coma
- anorexia
- tachycardia → tachyarrhythmias
- pulmonary edema/cardiac failure
- hypotension → shock
- confusion

Thyroid gland

hyperthyroidism: thyroid storm (crisis)
Endocrine pancreas
reminder: how does endocrine pancreas work

https://www.youtube.com/watch?v=kIPYVV4aThM

Welcome!

Dear visitor, present and future partner, we welcome you!

On our website you will find our recent publications, scientific, educational and clinical presentations. Here we also provide information about other forms of activity of our friendly and ambitious team. We hope that this information will be useful for your everyday creative work. We thank you for visiting our website, and if you have any questions and/or suggestions please do not hesitate to contact us via email mydoctorlife@gmail.com

The Department of Internal Medicine
V. N. Karazin Kharkiv National University

Our journal

Issue 30

News / Новини / Новости

Колектив
Колектив
Staff
Курсы лекций, підручники, методичні рекомендації
Курсы лекций, учебники, методические рекомендации
Courses of Lectures, Textbooks, Guidelines
Календарно-тематичні плани
Calendar-thematic plans of study
Educational work

Educational work of the Department is one of the primary activities. At the Department, teaching of students is conducted teaching of students in 6 subjects in Ukraine. Total amount of academic work is 38938 academic hours, of which 27231 practical, laboratory and seminar classes.

The teaching of students in the Department conducted in accordance with the recommendations of typical programs of subjects, approved The Ministry of Health (MOH) and The Ministry of Education and Science (MES) of Ukraine and improved within a regulated standards in staff of the Department. The teaching of all disciplines in the department is carried out in accordance with the guidelines and regulations of the Bologna process.

The educational process at the department is carried out using modern multimedia and computer.
Calendar-thematical plans of study

2016/2017 ACADEMIC YEAR

Autumn Term

For students of English tuition:

→ 3rd year
Calendar-thematic plan of lectures in Propaedeutics of internal medicine view/download
Calendar-thematic plan of practical lessons in Propaedeutics of internal medicine view/download
Calendar-thematic plan of practical lessons in Working practice "Nursing practice" view/download

→ 4th year
Calendar-thematic plan of lectures in Internal Medicine view/download
Calendar-thematic plan of practical lessons in Internal medicine view/download

5th year
Lectures

<table>
<thead>
<tr>
<th>Title</th>
<th>Instructor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital ward management</td>
<td>E. Golubkina</td>
<td>27.05.2016</td>
</tr>
<tr>
<td>Internal Medicine. Propaedeutics as an introduction to the clinic of internal medicine</td>
<td>Petrenko E. V</td>
<td>02.12.2015</td>
</tr>
<tr>
<td>Approach to the patient</td>
<td>M. Yabluchansky, L. Bogun, L. Martymianova, O. Bychkova, N. Lysenko, N. Makienko</td>
<td>07.07.2015</td>
</tr>
<tr>
<td>Propaedeutics as an Introduction to the Clinic of Internal Medicine</td>
<td>M. Yabluchansky, L. Bogun, L. Martymianova, O. Bychkova, N. Lysenko, N. Makienko, E. Golubkina</td>
<td>22.06.2015</td>
</tr>
</tbody>
</table>
Students scientific section

Student scientific section (SSS) of the Department of Internal Medicine of the Medical Faculty V. N. Karazin Kharkiv National University was organized in 2002.

The main purpose of the SSS is to assist in the implementation of scientific, creative and clinical potential of students and young scientists in various fields of internal medicine.

Students of scientific section, together with the staff of the department, are actively involved in clinical parsing and formal care conferences, scientific conferences, congresses, forums, symposiums and other events.
Clinical cases

Complicated Myocardial Infarction
Ahmad K. Zaki
Scientific advisers: ass. prof. O. Baby, prof. M. I. Yabluchansky

Гипертрофическая кардиомиопатия в мультиморбидности (на примере клинического случая)
А.И. Лахонина, А.В. Филатова
Научные руководители: к.м.н., доцент Н. В. Макиенко, к.м.н., доцент Н. А. Водяницкая, д.м.н., проф. Н. И. Яблучанский

Passions around Pheochromocytoma
M.A. Abiodun, E.A. Adegoke, A.O. Aduroja

Noonan’s syndrome
Our journal

GENERAL INFORMATION

From 1992 "The Journal of V. N. Karazin Kharkiv National University," series "Medicine" (until 2000 – "School of Fundamental Medicine Journal") was published by the staff of the department, which was included in the list of specialized editions of Ukraine.

Specialized registration in VAK of Ukraine: Attachment to the Resolution of the Presidium of VAK of Ukraine from 14.10.09 №1-05/4.

Frequency: 2 times per year.

Language: Ukrainian, English and Russian from 2000 till 2012, since 2013 only English.
About the Department

Today the Department of Internal Medicine is one of the leading in Ukraine in its profile, due to high personnel qualification, using of innovative approaches in educational works and relevant scientific research. The department trains specialists in the specialty 7.12010001 "General medicine".
Contact information

SCHOOL OF MEDICINE V. N. KARAZIN KHARKIV NATIONAL UNIVERSITY

Address: 6, Svobody Sq., 61022, Kharkiv

Website: http://medicine.karazin.ua/

E-mail: med@karazin.ua

On the map: https://goo.gl/maps/1wpV6b6mqME2

DEPARTMENT OF INTERNAL MEDICINE

Address: lane. Balakirev, 5, Kharkov, 61018, Ukraine

Website: http://im.medicine.karazin.ua/
The issues discussed in this article, along with the application of ethical principles and guidelines to them, are not unique principles apply whenever a
Endocrine pancreas reminder: the primary functions

Production of pancreatic hormones by three cell types: Glucagon by alpha cells; Insulin by beta cells; Somatostatin by delta cells

Hormones travel through the bloodstream to target tissues

At the target cells, hormones bind specific receptors and cause cell changes that control metabolism

http://www.daviddarling.info/images/islets_of_Langerhans.gif
Endocrine pancreas

Reminder: insulin & glucagon in glucose metabolism regulation

(a) Fed state: insulin dominates
- ↑ Glucose oxidation
- ↑ Glycogen synthesis
- ↑ Fat synthesis
- ↑ Protein synthesis

(b) Fasted state: glucagon dominates
- ↑ Glycogenolysis
- ↑ Gluconeogenesis
- ↑ Ketogenesis
Endocrine pancreas

reminder: structure & roles of insulin 1

- Insulin is a polypeptide hormone, composed of two chains (A and B)
- Both chains are derived from proinsulin (prohormone)
- Chains are joined by disulfide bonds

![Diagram of Human Insulin](http://www.bio.davidson.edu/Courses/Molbio/MolStudents/spring2003/Williford/structure_insulin.gif)
Endocrine pancreas
reminder: structure & roles of insulin 2

- Acts on tissues to increase uptake of glucose and amino acids
- Increases glycogen production (glucose storage) in the liver and muscle
- Stimulates lipid synthesis from free fatty acids and triglycerides in adipose tissue
- Also stimulates potassium uptake by cells (role in potassium homeostasis)
Endocrine pancreas

reminder: insulin secretion control’ mechanisms 1

- Chemically – high levels of glucose and amino acids in the blood
- Hormonally – beta cells are sensitive to several hormones that may inhibit or cause insulin secretion
- Neurally – stimulation of the parasympathetic nervous system causes insulin to be secreted
Endocrine pancreas

reminder: insulin secretion control’ mechanisms 2

- Insulin secretion is decreased by decreased glucose and increased insulin concentration in blood and sympathetic stimulation.
- Insulin transported through the blood to target tissues where it binds to target cells’ specific receptors and acts as a biochemical signal to the inside of the cell: cell metabolism is stimulated.
Endocrine pancreas
reminder: blood fasting glucose levels

• The normal range - a narrow range of about 3.9 to 5.5 mmol/L (as measured by a fasting blood glucose test)

• Hyperglycemia - high levels
 – Short term (physiological, pathological)
 – Persistent
 • impaired – pre-diabetes
 • high - esp. diabetes mellitus (DM)

• Hypoglycemia - low levels

http://www.heartlandscf.org/assets/images/shutterstock_76973791glucose%20monitor.jpg
Endocrine pancreas reminder: purpose

- General evaluation of health
- Diagnosis of disease or disorders of endocrine pancreas
- Diagnosis of other systemic diseases that affect endocrine pancreas
Endocrine pancreas

history-taking: patient’s interviewing

- gathering of information
- patient’s narrative
- biomedical perspective
- psychosocial perspective
- context

Clinical Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure</td>
<td>Management; monitor hypertension and thus risk of heart disease</td>
</tr>
<tr>
<td>Eye exam</td>
<td>Management; monitor onset and progression of eye disease</td>
</tr>
<tr>
<td>Foot exam</td>
<td>Management; monitor onset and progression of nerve disease and peripheral arterial disease</td>
</tr>
</tbody>
</table>
The **American Diabetes Association** (ADA) recommendations:

- **Obesity** (BMI >25 kg/m2) – consider testing to detect pre-DM and type 2 DM in asymptomatic people
- **Family history of DM** in first- or second-degree relative
The **American Diabetes Association** (ADA) recommendations:

- Signs of insulin resistance or conditions associated with insulin resistance (eg, acanthosis nigricans, hypertension, dyslipidemia, low birthweight)
- Maternal history of DM or gestational diabetes mellitus (GDM) during gestation
Endocrine pancreas

patient's laboratory examination: diabetes panel 1

- Complete Blood Count (CBC)
- Glucose, Serum (Fasting)
- Oral glucose tolerance test (OGTT)
- Random blood glucose
- Islet cell antibody test (for type 1 diabetes)
- Hemoglobin A1c
- Diabetic Urinalysis

http://www.anylabtestnow.com/tests/diabetes-maintenance-panel/
The current WHO diagnostic criteria for diabetes should be maintained
– fasting plasma glucose ≥ 7.0mmol/l (126mg/dl) or 2–h plasma glucose ≥ 11.1mmol/l (200mg/dl
– HbA1c ≥ 6.5% = diabetes mellitus, HbA1c 5.7 to 6.4% = pre-diabetes or at risk of diabetes

HbA1c reflects average plasma glucose over the previous 2–3 months in a single measure which can be performed at any time of the day and does not require any special preparation such as fasting.
Endocrine pancreas

Patient's laboratory examination: diagnostic significance of glucose and hemoglobin A1c concentrations

<table>
<thead>
<tr>
<th>Individuals Suitable for Testing</th>
<th>Marker</th>
<th>Clinically Significant Level</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-pregnant individuals with diabetes risk factors or age ≥45 years and pregnant women with risk factors (first prenatal visit)</td>
<td>FPG, 2-h OGTT (75 g), HbA1c</td>
<td>≥126 mg/dL, ≥200 mg/dL, ≥6.5%</td>
<td>Diabetes</td>
</tr>
<tr>
<td>All pregnant women (24-28 weeks of gestation)</td>
<td>2-h OGTT (75 g) • Fasting • 1 h • 2 h</td>
<td>≥92 mg/dL, ≥180 mg/dL, ≥153 mg/dL</td>
<td>Gestational diabetes</td>
</tr>
</tbody>
</table>

FPG, fasting plasma glucose; OGTT, oral glucose tolerance test; HbA1c, hemoglobin A1c.
• Glucosuria can be detected when level of blood glucose exceeds more than 11mmol/l
• Urine tests can’t be used to alone to confirm the diagnosis of diabetes mellitus
• They are ordered more often when there is suspicion on type 1 diabetes
• Laboratories can test urine for ketone bodies

http://www.biosynergypro.com/uploads/1/2/9/0/12905439/_8435009_orig.png
The body produces ketone bodies when fat tissue is used for energy instead of blood sugar.

If ketone bodies are present in the urine, this could indicate the high level of glucose in blood with insufficient level of insulin production.

Endocrine pancreas

patient's laboratory examination: diabetic urinalysis 2
Endocrine pancreas
Glucose Meters

Continuous glucose monitors (CGMs) contain subcutaneous sensors that measure interstitial glucose levels every 1-5 minutes, providing alarms when glucose levels are too high or too low or are rapidly rising or falling.

Endocrine pancreas
Continuous Glucose Monitors (CGMs)
Endocrine pancreas
high level persistent hyperglycemia (DM): types 1

• DM type 1 results from the body's failure to produce enough insulin
• Main risk factors: viruses and toxins that can affect genetically determinated antigens of HLA system and cause autoimmune destruction of beta cells in the islets of Langerhans
Endocrine pancreas
high level persistent hyperglycemia (DM): types 2

- DM type 2 begins with insulin resistance, a condition in which cells fail to respond to insulin properly
- As the disease progresses a lack of insulin may also develop
- This form was previously referred to as "non insulin-dependent diabetes mellitus" (NIDDM) or "adult-onset diabetes"
- The primary cause is excessive body weight and lack of exercise
Endocrine pancreas
high level persistent hyperglycemia (DM): types 3

• Gestational diabetes, is the third main form and occurs when pregnant women without a previous history of diabetes develop a high blood glucose level
Endocrine pancreas

High level persistent hyperglycemia (DM): classic & other clinical symptoms

Classic

- Polyphagia (increased hunger)
- Polyuria (frequent urination)
- Polydipsia (increased thirst)
Endocrine pancreas
high level persistent hyperglycemia (DM):
classic & other clinical symptoms

Other

• Blurred vision
• Fatigue
• Weight loss
• Poor wound healing (cuts, scrapes, etc.)
• Dry mouth
• Dry or itchy skin
Endocrine pancreas
high level persistent hyperglycemia (DM):
early & later clinical symptoms

Other

• Impotence (male)
• Recurrent infections such as vaginal yeast infections, groin rash, or external ear infections (swimmers ear)
Endocrine pancreas
high level persistent hyperglycemia (DM):
early & later clinical symptoms

Early

- Frequent urination
- Increased thirst
- Blurred vision
- Fatigue
- Headache
Later (ketoacidosis)

- Fruity-smelling breath
- Nausea and vomiting
- Shortness of breath
- Dry mouth
- Weakness
- Confusion, Coma
- Abdominal pain
Endocrine pancreas
high level persistent hyperglycemia (DM): early & later clinical symptoms

- Weight Loss
- Extreme Tiredness
- Increased Hunger
- Excessive Thirst
- Frequent Urination
- Tingling and Numbness
- Blurred Vision
- Unhealed Wound
- Urine Attracting Ants
Endocrine pancreas
high level persistent hyperglycemia (DM):
early & later clinical symptoms

Diabetes

Central
- Polydipsia
- Polyphagia
- Lethargy
- Stupor

Eyes
- Blurred vision

Systemic
- Weight loss

Breath
- Smell of acetone

Respiratory
- Kussmaul breathing (hyperventilation)

Gastric
- Nausea
- Vomiting
- Abdominal pain

Urinary
- Polyuria
- Glycosuria

blue = more common in Type 1
Endocrine pancreas
high level persistent hyperglycemia (DM)
acute complications: diabetic ketoacidosis 1

• A potentially life-threatening complication happens in pts DM 1, it can occur in those with DM 2
• The symptoms usually evolve over the period of about 24 hours
• Predominant symptoms are nausea and vomiting, pronounced thirst, excessive urine production, and abdominal pain
• Breathing becomes labored and of a deep, gasping character (Kussmaul respiration)
Endocrine pancreas
high level persistent hyperglycemia (DM)
acute complications: diabetic ketoacidosis 2

- In severe cases there may be confusion, lethargy, stupor, coma
- On physical examination there is evidence of dehydration (tachycardia, low blood pressure), "ketotic" odor, and death
- Blood analysis will reveal significant decreased pH < 7.30 mmol/l
- Urine analysis will reveal significant levels of ketone bodies, often before other overt symptoms
Endocrine pancreas
high level persistent hyperglycemia (DM)
acute complications: nonketotic hyperosmolar state 1

• An acute complication sharing many symptoms with diabetic ketoacidosis, but an entirely different origin
• Water osmotically drawn out of cells into the blood
• The kidneys eventually begin to dump glucose into the urine
• Serum pH >7.30, Bicarbonate >15 mEq/L, Small ketonuria and absent-to-low ketonemia (<3 mmol/L)
Endocrine pancreas
high level persistent hyperglycemia (DM)
acute complications: nonketotic hyperosmolar state 2

• Increased risk of blood clot formation
• If fluid is not replaced, the osmotic effect of high glucose levels, combined with the loss of water, will eventually lead to dehydration
• Some alteration in consciousness, lethargy may ultimately progress to a coma
Endocrine pancreas
high level persistent hyperglycemia (DM)
acute complications: coma 1

• A life-threatening DM complication that causes unconsciousness
• Three different types:
 – Severe low blood sugar in a DM person
 – Diabetic ketoacidosis advanced enough to result in unconsciousness from a combination of a severely increased blood sugar level, dehydration and shock, and exhaustion
Endocrine pancreas
high level persistent hyperglycemia (DM)
acute complications: coma 2

• Three different types:
 – Hyperosmolar nonketotic coma in which an extremely high blood sugar level and dehydration alone are sufficient to cause unconsciousness

• Diabetic coma was a diagnostic problem before the late 1970s, when glucose meters and rapid blood chemistry analyzers became universally available in hospitals
Endocrine pancreas
high level persistent hyperglycemia (DM)
acute complications: hypoglycemia 1

• A medical emergency that involves an abnormally diminished content of glucose in the blood
• Symptoms hypoglycemia usually do not occur until 2.8 to 3.0 mmol/L
• Adrenergic manifestations: shakiness, anxiety, nervousness, palpitations, tachycardia, sweating, pallor, coldness, clamminess, mydriasis
Endocrine pancreas
high level persistent hyperglycemia (DM)
acute complications: hypoglycemia 2

• Glucagon manifestations:
hunger, nausea, vomiting, abdominal discomfort, headache

• Neuroglycopenic manifestations: abnormal thinking, depression, crying, exaggerated concerns, paresthesia, negativism, emotional lability, fatigue, weakness, apathy, lethargy, daydreaming, confusion, amnesia, blurred vision, automatic behavior, difficulty speaking, incoordination, motor deficit, paresthesia, headache, stupor, coma, etc.
Endocrine pancreas
high level persistent hyperglycemia (DM): chronic complications 1

Microvascular
• Diabetic cardiomyopathy
• Diabetic nephropathy
• Diabetic neuropathy
• Diabetic retinopathy
• Diabetic encephalopathy
Endocrine pancreas
high level persistent hyperglycemia (DM):
chronic complications 2

Macrovascular
• Coronary artery disease
• Diabetic myonecrosis
• Peripheral vascular disease
• Stroke
Endocrine pancreas high level persistent hyperglycemia (DM): chronic complications 3

Other

• Gastrointestinal (gastroparesis, diarrhea)
• Genitourinary (uropathy/sexual dysfunction)
• Dermatologic
• Infectious
• Cataracts
• Glaucoma
• Periodontal disease
Endocrine pancreas
high level persistent hyperglycemia (DM):
main chronic complications
Diabetic retinopathy results in scattered hemorrhages, yellow exudates, and neovascularization.

This patient has neovascular vessels proliferating from the optic disc, requiring urgent panretinal laser photocoagulation.
• Low blood sugar is common in patients with DM, but most cases are mild and are not considered medical emergencies.

• Effects can range from feelings of unease, sweating, trembling, and increased appetite in mild cases to more serious issues such as confusion, aggressiveness, seizures, unconsciousness, and (rarely) permanent brain damage or death in severe cases.

https://en.wikipedia.org/wiki/Diabetes_mellitus#Signs_and_symptoms
Endocrine pancreas
hypoglycemia (DM)